FPGA Acceleration of ROS2-Based Reinforcement Learning Agents

Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, Takeshi Ohkawa

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

Reinforcement learning agents have shown very good results in robot control and navigation tasks, allowing robots to learn how to interact with an environment appropriately in a model-free manner. However, real-world robot systems have strict latency, power, and cost constraints, thus requiring special hardware consideration for the demanding computations of neural networks. Furthermore, reinforcement learning networks should be able to interface efficiently with the various other robot components. To address these challenges, we propose a method for applying FPGA hardware accelerators to robotics reinforcement learning agents at the inference stage and seamlessly integrating the FPGA hardware module to the robot system by automatically wrapping it in a Robot Operating System 2 (ROS2) node. The proposed system is evaluated in three OpenAI gym control environments: Cartpole-v1, Acrobot-v1, and Pendulum-v0. In the evaluation, both quantized and non-quantized reinforcement learning neural networks are used, and the proposed FPGA system is observed to provide up to a 3.69x speed up and up to 52.7x better performance per watt when compared to an agent running on a ROS2 node on a modern CPU.

本文言語English
ホスト出版物のタイトルProceedings - 2020 8th International Symposium on Computing and Networking Workshops, CANDARW 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ106-112
ページ数7
ISBN(電子版)9781728199191
DOI
出版ステータスPublished - 2020 11月
イベント8th International Symposium on Computing and Networking Workshops, CANDARW 2020 - Virtual, Naha, Japan
継続期間: 2020 11月 242020 11月 27

出版物シリーズ

名前Proceedings - 2020 8th International Symposium on Computing and Networking Workshops, CANDARW 2020

Conference

Conference8th International Symposium on Computing and Networking Workshops, CANDARW 2020
国/地域Japan
CityVirtual, Naha
Period20/11/2420/11/27

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 計算数学
  • 制御と最適化

フィンガープリント

「FPGA Acceleration of ROS2-Based Reinforcement Learning Agents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル