Fuzzy c-means algorithms for data with tolerance based on opposite criterions

Kanzawa Yuchi, Endo Yasunori, Miyamoto Sadaaki

研究成果: Article査読

12 被引用数 (Scopus)

抄録

In this paper, two new clustering algorithms are proposed for the data with some errors. In any of these algorithms, the error is interpreted as one of decision variables - called "tolerance" - of a certain optimization problem like the previously proposed algorithm, but the tolerance is determined based on the opposite criterion to its corresponding previously proposed one. Applying our each algorithm together with its corresponding previously proposed one, a reliability of the clustering result is discussed. Through some numerical experiments, the validity of this paper is discussed.

本文言語English
ページ(範囲)2194-2202
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E90-A
10
DOI
出版ステータスPublished - 2007 10月

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Fuzzy c-means algorithms for data with tolerance based on opposite criterions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル