Fuzzy c-means clustering for uncertain data using quadratic penalty-vector regularization

Yasunori Endo, Yasushi Hasegawa, Yukihiro Hamasuna, Yuchi Kanzawa

研究成果: Article査読

14 被引用数 (Scopus)

抄録

Clustering - defined as an unsupervised data-analysis classification transforming real-space information into data in pattern space and analyzing it - may require that data be represented by a set, rather than points, due to data uncertainty, e.g., measurement error margin, data regarded as one point, or missing values. These data uncertainties have been represented as interval ranges for which many clustering algorithms are constructed, but the lack of guidelines in selecting available distances in individual cases has made selection difficult and raised the need for ways to calculate dissimilarity between uncertain data without introducing a nearest-neighbor or other distance. The tolerance concept we propose represents uncertain data as a point with a tolerance vector, not as an interval, while this is convenient for handling uncertain data, tolerance-vector constraints make mathematical development difficult. We attempt to remove the tolerance-vector constraints using quadratic penaltyvector regularization similar to the tolerance vector. We also propose clustering algorithms for uncertain data considering optimization and obtaining an optimal solution to handle uncertainty appropriately.

本文言語English
ページ(範囲)76-82
ページ数7
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
15
1
DOI
出版ステータスPublished - 2011 1月

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Fuzzy c-means clustering for uncertain data using quadratic penalty-vector regularization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル