Fuzzy classification function of standard fuzzy c-means algorithm for data with tolerance using kernel function

Yuchi Kanzawa, Yasunori Endo, Sadaaki Miyamoto

研究成果: Conference contribution

抄録

In this paper, the fuzzy classification functions of the standard fuzzy c-means for data with tolerance using kernel functions are proposed. First, the standard clustering algorithm for data with tolerance using kernel functions are introduced. Second, the fuzzy classification function for fuzzy c-means without tolerance using kernel functions is discussed as the solution of a certain optimization problem. Third, the optimization problem is shown so that the solutions are the fuzzy classification function values for the standard fuzzy c-means algorithms using kernel functions with respect to data with tolerance. Fourth, Karush-Kuhn-Tucker conditions of the objective function is considered, and the iterative algorithm is proposed for the optimization problem. Some numerical examples are shown.

本文言語English
ホスト出版物のタイトルModeling Decisions for Artificial Intelligence - 5th International Conference, MDAI 2008, Proceedings
ページ122-133
ページ数12
DOI
出版ステータスPublished - 2008 12月 31
イベント5th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2008 - Sabadell, Spain
継続期間: 2008 10月 302008 10月 31

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5285 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference5th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2008
国/地域Spain
CitySabadell
Period08/10/3008/10/31

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Fuzzy classification function of standard fuzzy c-means algorithm for data with tolerance using kernel function」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル