抄録
This study presents a fuzzy clustering algorithm for classifying spherical data based on q-divergence. First, it is shown that a conventional method for vectorial data is equivalent to the regularization of another conventional method using q-divergence. Next, based on the knowledge that q-divergence is a generalization of Kullback-Leibler (KL)-divergence and that there is a conventional fuzzy clustering method for classifying spherical data based on KL-divergence, a fuzzy clustering algorithm for spherical data is derived based on q-divergence. This algorithm uses an optimization problem built by extending KL-divergence in the conventional method to q-divergence. Finally, some numerical experiments are conducted to verify the proposed methods.
本文言語 | English |
---|---|
ページ(範囲) | 561-570 |
ページ数 | 10 |
ジャーナル | Journal of Advanced Computational Intelligence and Intelligent Informatics |
巻 | 23 |
号 | 3 |
DOI | |
出版ステータス | Published - 2019 5月 |
ASJC Scopus subject areas
- 人間とコンピュータの相互作用
- コンピュータ ビジョンおよびパターン認識
- 人工知能