Generalized fuzzy c-means clustering and its property of fuzzy classification function

Yuchi Kanzawa, Sadaaki Miyamoto

研究成果: Article査読

4 被引用数 (Scopus)

抄録

This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers both standard and exponential fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits a behavior similar to that of both standard and exponential fuzzy c-means clustering.

本文言語English
ページ(範囲)73-82
ページ数10
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
25
1
DOI
出版ステータスPublished - 2021 1月 20

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Generalized fuzzy c-means clustering and its property of fuzzy classification function」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル