Hard and fuzzy c-means clustering with conditionally positive definite kernel

Yuchi Kanzawa, Yasunori Yasunori Endo, Sadaaki Miyamoto

研究成果: Article査読

抄録

In this paper, we investigate three types of c-means clustering algorithms with a conditionally positive definite (cpd) kernel. One is based on hard c-means and two are based on standard and entropy-regularized fuzzy c-means. First, based on a cpd kernel describing a squared Euclidean distance between data in feature space, these algorithms are derived from revised optimization problems of the conventional kernel c-means. Next, based on the relationship between the positive definite (pd) kernel and cpd kernel, the revised dissimilarity between a datum and a cluster center in the feature space is shown. Finally, it is shown that a cpd kernel c-means algorithm and a kernel c-means algorithm with a pd kernel derived from the cpd kernel are essentially identical to each other. Explicit mapping for a cpd kernel is also described geometrically.

本文言語English
ページ(範囲)825-830
ページ数6
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
16
7
DOI
出版ステータスPublished - 2012 11月

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Hard and fuzzy c-means clustering with conditionally positive definite kernel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル