Indoor Room Temperature and Relative Humidity Estimation in a Commercial Building Using the XGBoost Machine Learning Algorithm

Abraham Kaligambe, Goro Fujita, Keisuke Tagami

研究成果: Conference contribution

抄録

As technology advances, artificial intelligence (AI) techniques are being applied to commercial buildings to make them smart, reduce energy waste, and improve occupants' comfort. Some recent buildings are equipped with sensors to collect real-time data about the indoor environment, such as room temperature and relative humidity. Machine learning (ML) algorithms learn from the collected data to assist in the design of optimal thermal control of building systems, for example, heating, ventilation, and air conditioning (HVAC) systems. In this paper, we proposed the implementation of several extreme gradient boosting (XGBoost) models to estimate the unmeasured room temperature and relative humidity of a smart building in Japan. Our models accurately estimated temperature and humidity under various case studies with an average root mean squared error (RMSE) of 0.3 degrees and 2.6%, respectively. Results demonstrate the accurate estimation of indoor environment measurements relevant for optimal HVAC system control in buildings with fewer sensors.

本文言語English
ホスト出版物のタイトル2022 IEEE PES/IAS PowerAfrica, PowerAfrica 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665466394
DOI
出版ステータスPublished - 2022
イベント2022 IEEE PES/IAS PowerAfrica, PowerAfrica 2022 - Kigali, Rwanda
継続期間: 2022 8月 222022 8月 26

出版物シリーズ

名前2022 IEEE PES/IAS PowerAfrica, PowerAfrica 2022

Conference

Conference2022 IEEE PES/IAS PowerAfrica, PowerAfrica 2022
国/地域Rwanda
CityKigali
Period22/8/2222/8/26

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 再生可能エネルギー、持続可能性、環境
  • 電子工学および電気工学

フィンガープリント

「Indoor Room Temperature and Relative Humidity Estimation in a Commercial Building Using the XGBoost Machine Learning Algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル