Integrated on-chip 3D vascular network culture under hypoxia

Miguel Ángel Olmedo-Suárez, Tomohiro Sekiguchi, Atsushi Takano, Maria del Pilar Cañizares-Macías, Nobuyuki Futai

研究成果: Article査読

3 被引用数 (Scopus)


We developed a portable device made of poly(dimethylsiloxane) (PDMS)/polymethylmethacrylate (PMMA) for long-term 3D cell culture of vascular endothelial cells for the development of a vascular network and evaluated the device under different transitions between normoxia and hypoxia with good optical accessibility. The combination of a nested reservoir device and a bicarbonate/ascorbate buffer system accomplished on-chip incubation with 4.91 ± 0.86% pO2 and 5.19 ± 1.70% pCO2 for up to 10 days. Seventy-two hours of normoxic incubation preceding hypoxic culture increased the cell viability, network formation, and size and stability of the resulting lumens compared with those completely maintained in normoxia for the same total duration. We employed different parameters of the network (e.g., total mesh area, total length, number of branches, among others) for the comparison of different oxygen treatments in the device. The differential effect of hypoxic conditions based on the maturity of the vessels may be used as an external factor to improve vascular development in vitro.

出版ステータスPublished - 2020 5月 1

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 機械工学
  • 電子工学および電気工学


「Integrated on-chip 3D vascular network culture under hypoxia」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。