Internet of Things for Greenhouse Monitoring System Using Deep Learning and Bot Notification Services

Nuttakarn Kitpo, Yosuke Kugai, Masahiro Inoue, Taketoshi Yokemura, Shinichi Satomura

研究成果: Conference contribution

30 被引用数 (Scopus)

抄録

Internet of things (IoT) plays a big important role in agricultural industry recently in order to provide a support to farmers such as growth monitoring system of temperature, humidity and water supply, and also early disease monitoring and detection system. To provide a smart farming solutions, this paper proposed an IoT system with a bot notification on tomato growing stages. The tomato dataset was obtained from Shinchi Agri-Green, the tomato greenhouse in Fukushima, Japan. We trained and tested the deep learning model to detect the fruit proposal region. Then, the detected regions were classified into 6 stages of fruit growth using the visible wavelength as a feature in SVM classification with the weight accuracy of 91.5%.

本文言語English
ホスト出版物のタイトル2019 IEEE International Conference on Consumer Electronics, ICCE 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781538679104
DOI
出版ステータスPublished - 2019 3月 6
イベント2019 IEEE International Conference on Consumer Electronics, ICCE 2019 - Las Vegas, United States
継続期間: 2019 1月 112019 1月 13

出版物シリーズ

名前2019 IEEE International Conference on Consumer Electronics, ICCE 2019

Conference

Conference2019 IEEE International Conference on Consumer Electronics, ICCE 2019
国/地域United States
CityLas Vegas
Period19/1/1119/1/13

ASJC Scopus subject areas

  • 産業および生産工学
  • メディア記述
  • 電子工学および電気工学

フィンガープリント

「Internet of Things for Greenhouse Monitoring System Using Deep Learning and Bot Notification Services」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル