TY - JOUR
T1 - Investigations of (Gd, Dy)BCO bulk superconductors fabricated via top-seeded infiltration growth process
AU - Kumar Naik, S. Pavan
AU - Muralidhar, Miryala
AU - Nakanishi, Yuta
AU - Murakami, Masato
N1 - Publisher Copyright:
© 2002-2011 IEEE.
PY - 2018/6
Y1 - 2018/6
N2 - Infiltration growth (IG) process is superior compared to the conventional melt growth technique and is susceptible to various parameters. In this work, we had optimized the amount of Dysprosium (Dy) in top-seeded IG processed bulk high-temperature GdBa2Cu3O7-δ (GdBCO) superconductors for an enhancement of flux pinning. Similar sized 0, 10, 20, 30, and 40 wt% of the Dy2BaCuO5 secondary phase particles were added in Gd2BaCuO5 preforms, which were further subjected to top-seeded IG process in an air atmosphere. The microstructural and magnetic properties of (Gd, Dy)BCO superconducting systems were evaluated. The Dy addition shows no major influence on the microstructural features, but strongly indicates enhanced magnetic properties of final bulk (Gd, Dy)BCO composites. Sharp superconducting transitions were observed for all samples with an onset of critical temperature of ∼93 K. The critical current density J{c} of {{45.5}}\,{text{kA/cm}}{2} was achieved at self-field and 77 K in optimized composition of 20 wt% Dy-added GdBCO superconductor, and a considerable J-{c} of {{20 kA/cm}}-{2} was observed at an applied magnetic field of 2 T. The enhancement in superconducting properties was ascribed to a distribution of optimized stress fields induced by lattice mismatch defects and chemical compositional fluctuations.
AB - Infiltration growth (IG) process is superior compared to the conventional melt growth technique and is susceptible to various parameters. In this work, we had optimized the amount of Dysprosium (Dy) in top-seeded IG processed bulk high-temperature GdBa2Cu3O7-δ (GdBCO) superconductors for an enhancement of flux pinning. Similar sized 0, 10, 20, 30, and 40 wt% of the Dy2BaCuO5 secondary phase particles were added in Gd2BaCuO5 preforms, which were further subjected to top-seeded IG process in an air atmosphere. The microstructural and magnetic properties of (Gd, Dy)BCO superconducting systems were evaluated. The Dy addition shows no major influence on the microstructural features, but strongly indicates enhanced magnetic properties of final bulk (Gd, Dy)BCO composites. Sharp superconducting transitions were observed for all samples with an onset of critical temperature of ∼93 K. The critical current density J{c} of {{45.5}}\,{text{kA/cm}}{2} was achieved at self-field and 77 K in optimized composition of 20 wt% Dy-added GdBCO superconductor, and a considerable J-{c} of {{20 kA/cm}}-{2} was observed at an applied magnetic field of 2 T. The enhancement in superconducting properties was ascribed to a distribution of optimized stress fields induced by lattice mismatch defects and chemical compositional fluctuations.
KW - Critical current and flux pinning
KW - doping
KW - gadolinium compounds
UR - http://www.scopus.com/inward/record.url?scp=85042386299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042386299&partnerID=8YFLogxK
U2 - 10.1109/TASC.2018.2808499
DO - 10.1109/TASC.2018.2808499
M3 - Article
AN - SCOPUS:85042386299
SN - 1051-8223
VL - 28
JO - IEEE Transactions on Applied Superconductivity
JF - IEEE Transactions on Applied Superconductivity
IS - 4
M1 - 6801104
ER -