Kinetics of SiHCl3 and SiCl4 evolution in Si(s)-HCl(g) system simulated by ab-initio MO

Nagahiro Saito, Takahiro Ishizaki, Akio Fuwa

研究成果: Article査読

3 被引用数 (Scopus)

抄録

A reaction model for a HCl(g)-Si(s) system is proposed in this study as follows: first, SiCl2(g) and H2(g) are produced by a heterogeneous surface reaction, and then SiHCl3(g) and SiH2Cl2(g) are produced by the homogeneous reaction between SiCl2(g) and HCl(g) and between SiCl2(g) and H2(g), respectively; finally, SiCl4(g) and SiHCl3(g) are produced by the homogeneous reaction between SiHCl3(g) and HCl(g) and between SiH2Cl2(g) and HCl(g), respectively. The mechanism in the first heterogeneous surface reaction step has been studied extensively in the past. However, the detail of the subsequent homogeneous reactions has not yet been understood. It is important to get information of the chemical kinetics of the reactions derived from the reaction intermediate of SiCl2(g) in the SiCl2(g)-HCl(g)-H2(g) system, so the most plausible elementary reactions of reversible unimolecular fission and chain reaction are proposed here. The structures of the molecules formed in these reactions are optimized using the minimization principle of energy calculated by ab-initio molecular orbital method and also their rate constants are calculated by conventional transition state theory. Using these rate constants, the ordinary differential equations are solved on mass balance, and the time dependent concentration profile of respective chemical species and the prior reaction paths are discussed in this study.

本文言語English
ページ(範囲)383-392
ページ数10
ジャーナルUnknown Journal
41
3
DOI
出版ステータスPublished - 2000 3月
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Kinetics of SiHCl3 and SiCl4 evolution in Si(s)-HCl(g) system simulated by ab-initio MO」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル