Lie Algebraic Stability Analysis for Switched Systems With Continuous-Time and Discrete-Time Subsystems

Guisheng Zhai, Joe Imae, Tomoaki Kobayashi, Derong Liu

研究成果: Article査読

64 被引用数 (Scopus)

抄録

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all continuous-time subsystems are Hurwitz stable, all discrete-time subsystems are Schur stable, and furthermore the obtained Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. A numerical example is provided to demonstrate the result.

本文言語English
ページ(範囲)152-156
ページ数5
ジャーナルIEEE Transactions on Circuits and Systems II: Express Briefs
53
2
DOI
出版ステータスPublished - 2006 2月
外部発表はい

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Lie Algebraic Stability Analysis for Switched Systems With Continuous-Time and Discrete-Time Subsystems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル