抄録
We use the Fortuin-Kasteleyn representation-based improved estimator of the correlation configuration as an alternative to the ordinary correlation configuration in the machine-learning study of the phase classification of spin models. The phases of classical spin models are classified using the improved estimators, and the method is also applied to the quantum Monte Carlo simulation using the loop algorithm. We analyze the Berezinskii-Kosterlitz-Thouless (BKT) transition of the spin-1/2 quantum XY model on the square lattice. We classify the BKT phase and the paramagnetic phase of the quantum XY model using the machine-learning approach. We show that the classification of the quantum XY model can be performed by using the training data of the classical XY model.
本文言語 | English |
---|---|
論文番号 | 021302 |
ジャーナル | Physical Review E |
巻 | 102 |
号 | 2 |
DOI | |
出版ステータス | Published - 2020 8月 |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 統計学および確率
- 凝縮系物理学