Machine-learning study using improved correlation configuration and application to quantum Monte Carlo simulation

Yusuke Tomita, Kenta Shiina, Yutaka Okabe, Hwee Kuan Lee

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We use the Fortuin-Kasteleyn representation-based improved estimator of the correlation configuration as an alternative to the ordinary correlation configuration in the machine-learning study of the phase classification of spin models. The phases of classical spin models are classified using the improved estimators, and the method is also applied to the quantum Monte Carlo simulation using the loop algorithm. We analyze the Berezinskii-Kosterlitz-Thouless (BKT) transition of the spin-1/2 quantum XY model on the square lattice. We classify the BKT phase and the paramagnetic phase of the quantum XY model using the machine-learning approach. We show that the classification of the quantum XY model can be performed by using the training data of the classical XY model.

本文言語English
論文番号021302
ジャーナルPhysical Review E
102
2
DOI
出版ステータスPublished - 2020 8月

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Machine-learning study using improved correlation configuration and application to quantum Monte Carlo simulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル