Matrix calculus for axially symmetric polarized beam

研究成果: Article査読

12 被引用数 (Scopus)

抄録

The Jones calculus is a well known method for analyzing the polarization of a fully polarized beam. It deals with a beam having spatially homogeneous polarization. In recent years, axially symmetric polarized beams, where the polarization is not homogeneous in its cross section, have attracted great interest. In the present article, we show the formula for the rotation of beams and optical elements on the angularly variant term-added Jones calculus, which is required for analyzing axially symmetric beams. In addition, we introduce an extension of the Jones calculus: use of the polar coordinate basis. With this calculus, the representation of some angularly variant beams and optical elements are simplified and become intuitive. We show definitions, examples, and conversion formulas between different notations.

本文言語English
ページ(範囲)12815-12824
ページ数10
ジャーナルOptics Express
19
13
DOI
出版ステータスPublished - 2011 6月 20
外部発表はい

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Matrix calculus for axially symmetric polarized beam」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル