Microstructure evolution and creep behavior of near-¡ Ti alloy produced by thermomechanical processing

Haruki Masuyama, Kei Shimagami, Yoshiaki Toda, Tetsuya Matsunaga, Tsutomu Ito, Masayuki Shimojo, Yoko Yamabe-Mitarai

研究成果: Article査読

4 被引用数 (Scopus)

抄録

A microstructure evolution based on the processing and heat-treatment conditions was investigated for Ti-13Al-2Nb-2Zr (at%) alloy, which has a promising oxidation resistance. Three processing temperatures, 900°C and 1000°C in the ¡+¢ phase field, and 1080°C in the ¢ phase field, and two rolling reduction ratios, 93% and 67%, were selected as the processing conditions. In the samples processed and heat-treated in the ¡+¢ phase field, an almost fully equiaxed structure, i.e., the equiaxed or ellipsoid ¡ phase surrounded by the ¢ phase, was formed through furnace cooling, and a bi-modal structure was formed using air cooling. The morphology of the ¡ phase in the near fully equiaxed and lamellar structure depends on the rolling reduction ratio; in other words, the equiaxed and ellipsoid ¡ phases are formed at rolling reduction ratios of 93% and 67%, respectively. The volume fraction of the equiaxed ¡ phase in the bi-modal structure is processed at 900°C, which is higher than that of the bi-modal structure processed at 1000°C despite the same heat-treatment temperature applied. This is because the induced strain when processed at 1000°C is smaller than that when processed at 900°C. By contrast, in the samples processed in the ¢ phase field and heat-treated in either the ¡+¢ or ¢ phase field, a lamellar structure is formed. The creep behavior of the bi-modal structure obtained upon processing at 900°C and 1000°C for up to a 93% rolling reduction ratio was investigated. The creep life of the sample processed at 1000°C was two-times longer than the sample processed at 900°C. This is because a smaller volume fraction of the equiaxed ¡ phase in the sample processed at 1000°C than that of the sample processed at 900°C.

本文言語English
ページ(範囲)2336-2345
ページ数10
ジャーナルMaterials Transactions
60
11
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Microstructure evolution and creep behavior of near-¡ Ti alloy produced by thermomechanical processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル