Moment propagation of discrete-time stochastic polynomial systems using truncated carleman linearization

Sasinee Pruekprasert, Toru Takisaka, Clovis Eberhart, Ahmet Cetinkaya, Jérémy Dubut

研究成果: Conference article査読

1 被引用数 (Scopus)

抄録

We propose a method to compute an approximation of the moments of a discrete-time stochastic polynomial system. We use the Carleman linearization technique to transform this finite-dimensional polynomial system into an infinite-dimensional linear one. After taking expectation and truncating the induced deterministic dynamics, we obtain a finite-dimensional linear deterministic system, which we then use to iteratively compute approximations of the moments of the original polynomial system at different time steps. We provide upper bounds on the approximation error for each moment and show that, for large enough truncation limits, the proposed method precisely computes moments for sufficiently small degrees and numbers of time steps. We use our proposed method for safety analysis to compute bounds on the probability of the system state being outside a given safety region. Finally, we illustrate our results on two concrete examples, a stochastic logistic map and a vehicle dynamics under stochastic disturbance.

本文言語English
ページ(範囲)14462-14469
ページ数8
ジャーナルIFAC-PapersOnLine
53
2
DOI
出版ステータスPublished - 2020
外部発表はい
イベント21st IFAC World Congress 2020 - Berlin, Germany
継続期間: 2020 7月 122020 7月 17

ASJC Scopus subject areas

  • 制御およびシステム工学

フィンガープリント

「Moment propagation of discrete-time stochastic polynomial systems using truncated carleman linearization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル