Null QQ plots: A simple graphical alternative to significance testing for the comparison of classifiers

Daniel Berrar

研究成果: Conference contribution

抄録

The evaluation of machine learning algorithms is commonly based on statistical significance tests. However, the suitability of such tests is often questionable. We propose null QQ plots as a simple yet powerful graphical alternative to significance testing. Using ten benchmark data sets, we demonstrate that these plots concisely summarize the essential results from a comparative classification study, while they are easy to produce and interpret.

本文言語English
ホスト出版物のタイトルICPR 2012 - 21st International Conference on Pattern Recognition
ページ1852-1855
ページ数4
出版ステータスPublished - 2012 12月 1
イベント21st International Conference on Pattern Recognition, ICPR 2012 - Tsukuba, Japan
継続期間: 2012 11月 112012 11月 15

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
ISSN(印刷版)1051-4651

Other

Other21st International Conference on Pattern Recognition, ICPR 2012
国/地域Japan
CityTsukuba
Period12/11/1112/11/15

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Null QQ plots: A simple graphical alternative to significance testing for the comparison of classifiers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル