On n-trivialities of classical and virtual knots for some unknotting operations

Noboru Ito, Migiwa Sakurai

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this paper, we introduce a new nontrivial filtration, called F-order, for classical and virtual knot invariants; this filtration produces filtered knot invariants, which are called finite type invariants similar to Vassiliev knot invariants. Finite type invariants introduced by Goussarov, Polyak, and Viro are well-known, and we call them finite type invariants of GPV-order. We show that for any positive integer n and for any classical knot K, there exist infinitely many of nontrivial classical knots, all of whose finite type invariants of GPV-order ≤ n − 1, coincide with those of K (Theorem 1). Further, we show that for any positive integer n, there exists a nontrivial virtual knot whose finite type invariants of our F-order ≤ n − 1 coincide with those of the trivial knot (Theorem 2). In order to prove Theorem 1 (Theorem 2, resp.), we define an n-triviality via a certain unknotting operation, called virtualization (forbidden moves, resp.), and for any positive integer n, find an n-trivial classical knot (virtual knot, resp.).

本文言語English
ページ(範囲)329-347
ページ数19
ジャーナルJournal of the Mathematical Society of Japan
71
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On n-trivialities of classical and virtual knots for some unknotting operations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル