On Some Fuzzy Clustering Algorithms with Cluster-Wise Covariance

Toshiki Ishii, Yuchi Kanzawa

研究成果: Conference contribution

抄録

In many fuzzy clustering algorithms, the KL-divergence-regularized method based on the Gaussian mixture model, fuzzy classification maximum likelihood, and a fuzzy mixture of Student’s-t distributions have been proposed for cluster-wise anisotropic data, whereas more other types of fuzzification technique have been applied to fuzzy clustering for cluster-wise isotropic data. In this study, some fuzzy clustering algorithms are proposed based on the combinations between four types of fuzzification—namely, the Bezdek-type fuzzification, KL-divergence regularization, fuzzy classification maximum likelihood, and q-divergence-basis—and two types of mixture model—namely, the Gaussian mixture model and t-mixture model. Numerical experiments are conducted to demonstrate the features of the proposed methods.

本文言語English
ホスト出版物のタイトルIntegrated Uncertainty in Knowledge Modelling and Decision Making - 9th International Symposium, IUKM 2022, Proceedings
編集者Katsuhiro Honda, Tomoe Entani, Seiki Ubukata, Van-Nam Huynh, Masahiro Inuiguchi
出版社Springer Science and Business Media Deutschland GmbH
ページ191-203
ページ数13
ISBN(印刷版)9783030980177
DOI
出版ステータスPublished - 2022
イベント9th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2022 - Ishikawa, Japan
継続期間: 2022 3月 182022 3月 19

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13199 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference9th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2022
国/地域Japan
CityIshikawa
Period22/3/1822/3/19

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「On Some Fuzzy Clustering Algorithms with Cluster-Wise Covariance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル