One-parameter generalization of the Böttcher-Wenzel inequality and its application to open quantum dynamics

Dariusz Chruściński, Gen Kimura, Hiromichi Ohno, Tanmay Singal

研究成果: Article査読

抄録

In this paper, we introduce a one-parameter generalization of the famous Böttcher-Wenzel (BW) inequality in terms of a q-deformed commutator. For n×n matrices A and B, we consider the inequality Re〈[B,A],[B,A]q〉≤c(q)‖A‖2‖B‖2, where 〈A,B〉=tr(AB) is the Hilbert-Schmidt inner product, ‖A‖ is the Frobenius norm, [A,B]=AB−BA is the commutator, and [A,B]q=AB−qBA is the q-deformed commutator. We prove that when n=2, or when A is normal with any size n, the optimal bound is given by [Formula presented] We conjecture that this is also true for any matrices, and this conjecture is perfectly supported for n up to 15 by numerical optimization. When q=1, this inequality is exactly the BW inequality. When q=0, this inequality leads the sharp bound for the r-function which is recently derived for the application to universal constraints of relaxation rates in open quantum dynamics.

本文言語English
ページ(範囲)158-166
ページ数9
ジャーナルLinear Algebra and Its Applications
656
DOI
出版ステータスPublished - 2023 1月 1

ASJC Scopus subject areas

  • 代数と数論
  • 数値解析
  • 幾何学とトポロジー
  • 離散数学と組合せ数学

フィンガープリント

「One-parameter generalization of the Böttcher-Wenzel inequality and its application to open quantum dynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル