P2PTV Traffic Classification and Its Characteristic Analysis Using Machine Learning

Koji Hayashi, Rina Ooka, Takumi Miyoshi, Taku Yamazaki

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper proposes a classification method for peer-to-peer video streaming (P2PTV) traffic using machine learning. Since the user terminals (peers) share video data in P2PTV, P2PTV traffic is difficult to control and manage statically as both the number of peers sharing the same video data and the throughput vary with respect to contents. Although there exists a conventional method to classify and model P2PTV traffic by focusing on the number of peers and throughput, problems on the classification criteria and reproducibility remain in this method. In this paper, we use a clustering method that is considered as one of the machine learning methods and try to classify P2PTV traffic data into some categories. We extracted 18 features by analyzing P2PTV traffic of popular P2PTV applications: PPStream and PPTV; and then classified the traffic. The classification results show that about 400 traffic data sets were categorized into four clusters.

本文言語English
ホスト出版物のタイトル2019 20th Asia-Pacific Network Operations and Management Symposium
ホスト出版物のサブタイトルManagement in a Cyber-Physical World, APNOMS 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9784885523205
DOI
出版ステータスPublished - 2019 9月
イベント20th Asia-Pacific Network Operations and Management Symposium, APNOMS 2019 - Matsue, Japan
継続期間: 2019 9月 182019 9月 20

出版物シリーズ

名前2019 20th Asia-Pacific Network Operations and Management Symposium: Management in a Cyber-Physical World, APNOMS 2019

Conference

Conference20th Asia-Pacific Network Operations and Management Symposium, APNOMS 2019
国/地域Japan
CityMatsue
Period19/9/1819/9/20

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 情報システムおよび情報管理

フィンガープリント

「P2PTV Traffic Classification and Its Characteristic Analysis Using Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル