Path planning of a mobile robot as a discrete optimization problem and adjustment of weight parameters in the objective function by reinforcement learning

Harukazu Igarashi

研究成果: Conference contribution

抄録

In a previous paper, we proposed a solution to path planning of a mobile robot. In our approach, we formulated the problem as a discrete optimization problem at each time step. To solve the optimization problem, we used an objective function consisting of a goal term, a smoothness term and a collision term. This paper presents a theoretical method using reinforcement learning for adjusting weight parameters in the objective functions. However, the conventional Q-learning method cannot be applied to a non-Markov decision process. Thus, we applied Williams's learning algorithm, REINFORCE, to derive an updating rule for the weight parameters. This is a stochastic hill-climbing method to maximize a value function. We verified the updating rule by experiment.

本文言語English
ホスト出版物のタイトルRoboCup 2000
ホスト出版物のサブタイトルRobot Soccer World Cup IV
編集者Peter Stone, Tucker Balch, Gerhard Kraetzschmar
出版社Springer Verlag
ページ315-320
ページ数6
ISBN(印刷版)3540421858, 9783540421856
DOI
出版ステータスPublished - 2001
外部発表はい
イベント4th Robot World Cup Soccer Games and Conferences, RoboCup 2000 - Melbourne, VIC, Australia
継続期間: 2000 8月 272000 9月 3

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2019 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference4th Robot World Cup Soccer Games and Conferences, RoboCup 2000
国/地域Australia
CityMelbourne, VIC
Period00/8/2700/9/3

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Path planning of a mobile robot as a discrete optimization problem and adjustment of weight parameters in the objective function by reinforcement learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル