Power-regularized fuzzy c-means clustering with a fuzzification parameter less than one

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The present study proposes two types of powerregularized fuzzy c-means (pFCM) clustering algorithms with a fuzzification parameter less than one, which supplements previous work on pFCM with a fuzzification parameter greater than one. Both the proposed methods are essentially identical to each other, but not when fuzzification parameter values are specified. Theoretical discussion reveals the property of the proposed methods, and some numerical results substantiate the property of the proposedmethods and show that the proposed methods outperform two conventional methods from an accuracy point of view.

本文言語English
ページ(範囲)561-570
ページ数10
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
20
4
DOI
出版ステータスPublished - 2016

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Power-regularized fuzzy c-means clustering with a fuzzification parameter less than one」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル