Probability-changing cluster algorithm for two-dimensional XY and clock models

Yusuke Tomita, Yutaka Okabe

研究成果: Article査読

58 被引用数 (Scopus)

抄録

We extend the newly proposed probability-changing cluster (PCC) Monte Carlo algorithm to the study of systems with the vector order parameter. Wolff's idea of the embedded cluster formalism is used for assigning clusters. The Kosterlitz-Thouless (KT) transitions for the two-dimensional (2D) XY and q-state clock models are studied by using the PCC algorithm. Combined with the finite-size scaling analysis based on the KT form of the correlation length, ξαexp(c/√T/TKT - 1), we determine the KT transition temperature and the decay exponent η as TKT = 0.8933(6) and η = 0.243(4) for the 2D XY model. We investigate two transitions of the KT type for the 2D q-state clock models with q = 6,8,12 and confirm the prediction of η = 4/q2 at T1, the low-temperature critical point between the ordered and XY-like phases, systematically.

本文言語English
論文番号184405
ページ(範囲)1844051-1844055
ページ数5
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
65
18
出版ステータスPublished - 2002 5月 1
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Probability-changing cluster algorithm for two-dimensional XY and clock models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル