Quadratic stabilisation of switched affine systems

Minqing Xiao, Guisheng Zhai, Chi Huang

研究成果: Article査読

9 被引用数 (Scopus)


We deal with quadratic stabilisation for switched systems which are composed of a finite set of affine subsystems, where both subsystem matrices and affine vectors in the vector fields are switched independently, and no single subsystem has desired quadratic stability. We show that if a convex combination of subsystem matrices is Hurwitz and another convex combination of affine vectors is zero, then we can design a state-dependent switching law and an output-dependent switching law such that the entire switched system is quadratically stable at the origin. If the convex combination of affine vectors is not zero, we discuss the quadratic stabilisation to a convergence set defined by the convex combination of subsystem matrices and that of affine vectors. We extend the discussion to switched uncertain affine systems with norm bounded uncertainties, and establish a quadratically stabilising state-dependent switching law based on an (Formula presented.) norm condition for a combination of subsystems. Several numerical examples show effectiveness of the results.

ジャーナルJournal of Control and Decision
出版ステータスPublished - 2020 1月 2

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 信号処理
  • 情報システム
  • 人間とコンピュータの相互作用
  • コンピュータ ネットワークおよび通信
  • 制御と最適化
  • 人工知能


「Quadratic stabilisation of switched affine systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。