TY - JOUR
T1 - Relationship between Eu3+ substitution sites and photoluminescence properties of SrIn2O4:Eu3+ spinel phosphors
AU - Kang, Yipu
AU - Thuy, Bui
AU - Shimokawa, Yohei
AU - Hayakawa, Tomokatsu
AU - Sakaida, Satoshi
AU - Miao, Lei
AU - Tanemura, Sakae
AU - Honda, Sawao
AU - Iwamoto, Yuji
N1 - Funding Information:
This work was supported in part by the Japan Science and Technology Agency (JST) under the Adaptable and Seamless Technology Transfer Program through target–driven R&D (A-STEP), and by a Grant-in-Aid for Scientific Research (B) (No. 20360297 ) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Eu3+-doped SrIn2O4 phosphors were synthesized by the solid solution method at 1400 °C in air. The chemical composition of the phosphors was systematically changed to study the relation between the Eu3+ substitution site and photoluminescence (PL) properties. Under excitation of the 7F0→5L6 transition of Eu3+ at 393 nm, the SrIn2O4:Eu3+ exhibited dominant red emission peaks at 611, 616 and 623 nm, which are attributed to the electric dipole transition 5D0→7F2 of Eu3+. The results of X-ray diffraction analysis combined with PL spectroscopic analysis revealed that Eu3+ ions occupied two different crystallographic In3+ sites in the host SrIn2O4, while it was found to be impossible to substitute Sr2+ with Eu3+ prior to the Eu3+ substitution at the In3+ sites in the SrIn2O4. The intensity of the red emission peaks increased with the total amount of dopant Eu3+ ion at the two In3+ sites, and reached a maximum at 25 mol% Eu3+-doping (SrIn2-xO4:xEu3+, x=0.25). Moreover, a small amount (<10 mol%) of Eu3+ at the Sr2+ site in the SrIn2-xO4:xEu3+ was found to contribute to enhance the red emission peak intensity at 616 nm. As a result, the highest red emission intensity evaluated as the total emission peak intensities at the 611, 616 and 623 nm was achieved for Sr0.92In1.75O4:0.33Eu3+ in which Eu3+ ion concentrations at the In3+ and Sr2+ sites were simultaneously optimized as 25 and 8 mol%, respectively (Sr1-yIn2-xO4:(x+y)Eu3+, x=0.25, y=0.08). This red emission intensity was 2.2 times higher than that of the phosphor without contribution of the Eu3+ at the Sr2+ site (SrIn2-xO4:xEu3+, x=0.25). The critical energy transfer distance of Eu3+ ion in the Sr0.92In1.75O4:0.33Eu3+ phosphor was determined to be 0.817 nm, and the electric multipolar interaction was suggested as the dominant mechanism for concentration quenching of PL emission due to Eu3+ ions in the Eu3+-doped SrIn2O4 phosphors investigated in this study.
AB - Eu3+-doped SrIn2O4 phosphors were synthesized by the solid solution method at 1400 °C in air. The chemical composition of the phosphors was systematically changed to study the relation between the Eu3+ substitution site and photoluminescence (PL) properties. Under excitation of the 7F0→5L6 transition of Eu3+ at 393 nm, the SrIn2O4:Eu3+ exhibited dominant red emission peaks at 611, 616 and 623 nm, which are attributed to the electric dipole transition 5D0→7F2 of Eu3+. The results of X-ray diffraction analysis combined with PL spectroscopic analysis revealed that Eu3+ ions occupied two different crystallographic In3+ sites in the host SrIn2O4, while it was found to be impossible to substitute Sr2+ with Eu3+ prior to the Eu3+ substitution at the In3+ sites in the SrIn2O4. The intensity of the red emission peaks increased with the total amount of dopant Eu3+ ion at the two In3+ sites, and reached a maximum at 25 mol% Eu3+-doping (SrIn2-xO4:xEu3+, x=0.25). Moreover, a small amount (<10 mol%) of Eu3+ at the Sr2+ site in the SrIn2-xO4:xEu3+ was found to contribute to enhance the red emission peak intensity at 616 nm. As a result, the highest red emission intensity evaluated as the total emission peak intensities at the 611, 616 and 623 nm was achieved for Sr0.92In1.75O4:0.33Eu3+ in which Eu3+ ion concentrations at the In3+ and Sr2+ sites were simultaneously optimized as 25 and 8 mol%, respectively (Sr1-yIn2-xO4:(x+y)Eu3+, x=0.25, y=0.08). This red emission intensity was 2.2 times higher than that of the phosphor without contribution of the Eu3+ at the Sr2+ site (SrIn2-xO4:xEu3+, x=0.25). The critical energy transfer distance of Eu3+ ion in the Sr0.92In1.75O4:0.33Eu3+ phosphor was determined to be 0.817 nm, and the electric multipolar interaction was suggested as the dominant mechanism for concentration quenching of PL emission due to Eu3+ ions in the Eu3+-doped SrIn2O4 phosphors investigated in this study.
KW - Eu substitution site
KW - Photoluminescence
KW - Red emitting
KW - SrInO
KW - Thermal quenching property
UR - http://www.scopus.com/inward/record.url?scp=84941985144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84941985144&partnerID=8YFLogxK
U2 - 10.1016/j.jlumin.2015.08.055
DO - 10.1016/j.jlumin.2015.08.055
M3 - Article
AN - SCOPUS:84941985144
SN - 0022-2313
VL - 169
SP - 78
EP - 85
JO - Journal of Luminescence
JF - Journal of Luminescence
ER -