Robustly Predicting Pedestrian Destinations Using Pre-trained Machine Learning Model for a Voice Guidance Robot∗

Asami Ohta, Satoshi Okano, Nobuto Matsuhira, Yuka Kato

研究成果: Conference contribution

抄録

In this paper, we propose a method robustly predicting the destination of a pedestrian heading toward a robot in order to provide suitable voice guidance to him/her by communication robots installed at the reception desks of public facilities. For this purpose, we measure a pedestrian trajectory with a laser range scanner attached to the robot, and predict the destination among more than three branches by cascading multiple predictor models for two branches pre-trained by a machine learning algorithm. In order to verify the effectiveness of the proposed method, we conduct experiments using a dataset of tracking pedestrians at a shopping mall, and data observed in the real environment. The result shows that our method can predict three branch destinations with an accuracy of about 80%.

本文言語English
ホスト出版物のタイトルProceedings
ホスト出版物のサブタイトルIECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society
出版社IEEE Computer Society
ページ6922-6927
ページ数6
ISBN(電子版)9781728148786
DOI
出版ステータスPublished - 2019 10月
イベント45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019 - Lisbon, Portugal
継続期間: 2019 10月 142019 10月 17

出版物シリーズ

名前IECON Proceedings (Industrial Electronics Conference)
2019-October

Conference

Conference45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019
国/地域Portugal
CityLisbon
Period19/10/1419/10/17

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Robustly Predicting Pedestrian Destinations Using Pre-trained Machine Learning Model for a Voice Guidance Robot∗」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル