Self-organizing rhythmic patterns with spatio-temporal spikes in class i and class II neural networks

Ryosuke Hosaka, Tohru Ikeguchi, Kazuyuki Aihara

研究成果: Conference contribution

抄録

Regularly spiking neurons are classified into two categories, Class I and Class 11, by their firing properties for constant inputs. To investigate how the firing properties of single neurons affect to ensemble rhythmic activities in neural networks, we constructed different types of neural networks whose excitatory neurons are the Class I neurons or the Class II neurons. The networks were driven by random inputs and developed with STDP learning. As a result, the Class I and the Class II neural networks generate different types of rhythmic activities: the Class I neural network generates slow rhythmic activities, and the Class II neural network generates fast rhythmic activities.

本文言語English
ホスト出版物のタイトルNeural Information Processing - 13th International Conference, ICONIP 2006, Proceedings
出版社Springer Verlag
ページ39-48
ページ数10
ISBN(印刷版)3540464794, 9783540464792
DOI
出版ステータスPublished - 2006
外部発表はい
イベント13th International Conference on Neural Information Processing, ICONIP 2006 - Hong Kong, China
継続期間: 2006 10月 32006 10月 6

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4232 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference13th International Conference on Neural Information Processing, ICONIP 2006
国/地域China
CityHong Kong
Period06/10/306/10/6

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Self-organizing rhythmic patterns with spatio-temporal spikes in class i and class II neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル