抄録
This work describes a new method for determining K+ concentration, [K+], in blood plasma using a smartphone with a custom-built optical attachment. The method is based on turbidity measurement of blood plasma solutions in the presence of sodium tetraphenylborate, a known potassium precipitating reagent. The images obtained by a smartphone camera are analyzed by a custom image-processing algorithm which enables the transformation of the image data from RGB to HSV color space and calculation of a mean value of the light-intensity component (V). Analysis of images of blood plasma containing different amounts of K+ reveal a correlation between V and [K+]. The accuracy of the method was confirmed by comparing the results with the results obtained using commercial ion-selective electrode device (ISE) and atomic absorption spectroscopy (AAS). The accuracy of the method was within ± 0.18 mM and precision ± 0.27 mM in the [K+] range of 1.5–7.5 mM when using treated blood plasma calibration. Spike tests on a fresh blood plasma show good correlation of the data obtained by the smartphone method with ISE and AAS. The advantage of the method is low cost and integration with a smartphone which offers possibility to measure [K+] on demand and in remote areas where access to hospitals is limited.
本文言語 | English |
---|---|
論文番号 | 4751 |
ジャーナル | Sensors |
巻 | 21 |
号 | 14 |
DOI | |
出版ステータス | Published - 2021 7月 2 |
ASJC Scopus subject areas
- 分析化学
- 情報システム
- 原子分子物理学および光学
- 生化学
- 器械工学
- 電子工学および電気工学