Stability analysis and design of switched normal systems

Guisheng Zhai, Hai Lin, Xuping Xu, Anthony N. Michel

研究成果: Conference article査読

15 被引用数 (Scopus)

抄録

In this paper, we study stability property for a class of switched systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time. When all continuous-time subsystems are Hurwitz stable and all discrete-time subsystems are Schur stable, we show that a common quadratic Lyapunov function exists for the subsystems and that the switched system is exponentially stable under arbitrary switching. When unstable subsystems are involved, we show that given a desired decay rate of the system, if the activation time ratio between unstable subsystems and stable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.

本文言語English
論文番号ThB02.4
ページ(範囲)3253-3258
ページ数6
ジャーナルProceedings of the IEEE Conference on Decision and Control
3
出版ステータスPublished - 2004
外部発表はい
イベント2004 43rd IEEE Conference on Decision and Control (CDC) - Nassau, Bahamas
継続期間: 2004 12月 142004 12月 17

ASJC Scopus subject areas

  • 制御およびシステム工学
  • モデリングとシミュレーション
  • 制御と最適化

フィンガープリント

「Stability analysis and design of switched normal systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル