Stability analysis for switched systems with continuous-time and discrete-time subsystems

Guisheng Zhai, Hai Lin, Anthony N. Michel, Kazunori Yasuda

研究成果: Conference contribution

48 被引用数 (Scopus)

抄録

In this paper, we study stability property for a new type of switched systems which are composed of a continuous-time LTI subsystem and a discrete-time LTI subsystem. When the two subsystems are Hurwitz and Schur stable, respectively, we show that if the subsystem matrices commute each other, or if they are symmetric, then a common Lyapunov function exists for the two subsystems and that the switched system is exponentially stable under arbitrary switching. Without the assumption of commutation or symmetricity condition, we show that the switched system is exponentailly stable if the average dwell time between the subsystems is larger than a specified constant. When neither of the two subsystems is stable, we propose a sufficient condition in the form of a combination of the two subsystem matrices, under which we propose a stabilizing switching law.

本文言語English
ホスト出版物のタイトルProceedings of the 2004 American Control Conference (AAC)
ページ4555-4560
ページ数6
DOI
出版ステータスPublished - 2004
外部発表はい
イベントProceedings of the 2004 American Control Conference (AAC) - Boston, MA, United States
継続期間: 2004 6月 302004 7月 2

出版物シリーズ

名前Proceedings of the American Control Conference
5
ISSN(印刷版)0743-1619

Conference

ConferenceProceedings of the 2004 American Control Conference (AAC)
国/地域United States
CityBoston, MA
Period04/6/3004/7/2

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Stability analysis for switched systems with continuous-time and discrete-time subsystems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル