Stochastic heat diffusion modelling with random walks on the non-uniformly gridded circle

Lukas Frannek, Tomohisa Hayakawa, Ahmet Cetinkaya

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

A technique to approximate heat diffusion on Riemannian manifolds is presented. We provide a numerical way to approximate the solution to the heat equation by using the idea of random walks of particles, governed by a continuous-time Markov chain, where the transition rates of the Markov chain are characterized by the distances between nodes on a given grid with non-equally placed nodes. The emphasis lies on the fact that nodes do not need to be distributed equidistant from each other, since such a regular grid is not effective on many manifolds, where some parts of the manifold require less nodes than others due to curvature. In this paper we show how to characterize the Markov chain for a given grid in order to build a framework for the numerical approximation of the solution to the heat equation on Riemannian manifolds. This framework approximates the Laplace-Beltrami operator which is used on such manifolds. Furthermore, we discuss advantages of this technique and provide examples and simulations of our results.

本文言語English
ホスト出版物のタイトル2014 American Control Conference, ACC 2014
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1150-1155
ページ数6
ISBN(印刷版)9781479932726
DOI
出版ステータスPublished - 2014
外部発表はい
イベント2014 American Control Conference, ACC 2014 - Portland, OR, United States
継続期間: 2014 6月 42014 6月 6

出版物シリーズ

名前Proceedings of the American Control Conference
ISSN(印刷版)0743-1619

Conference

Conference2014 American Control Conference, ACC 2014
国/地域United States
CityPortland, OR
Period14/6/414/6/6

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Stochastic heat diffusion modelling with random walks on the non-uniformly gridded circle」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル