Surface-potential reversibility of an amino-terminated self-assembled monolayer based on nanoprobe chemistry

Nagahiro Saito, Sun Hyung Lee, Ishizaki Takahiro, Junko Hieda, Hiroyuki Sugimura, Osamu Takai

研究成果: Article査読

20 被引用数 (Scopus)


Nanoprobe chemistry offers a promising approach for the construction of nanostructures consisting of organic molecules by employing the tip of a scanning probe microscope. In a previous report, we demonstrated that a nitroso-terminated surface on an organosilane self-assembled monolayer could be converted into an amino-terminated surface by applying such a nanoprobe electrochemical technique. This paper reports on surface-potential reversibility originating from a reversible chemical reaction between amino and nitroso groups. In addition, we demonstrate surface-potential memory based on this chemical reversibility. Ammo-terminated SAMs were prepared from p-aminophenyl-trimethoxysilane through chemical vapor deposition. Surface potentials were acquired by Kelvin force microscopy. When scanning probe lithography was conducted with a gold tip at positive-bias voltages, the surface potential of the scanned area shifted dramatically in the negative direction. Scanning with negative-bias voltages led to positive shift in the surface potential of the scanned area. The surface potential could be recovered even after multiple scannings with positive and negative applied bias voltages. On the basis of this discovery, we also succeeded in demonstrating surface-potential memory via our nanoprobe electrochemical technique.

ジャーナルJournal of Physical Chemistry B
出版ステータスPublished - 2005 6月 16

ASJC Scopus subject areas

  • 物理化学および理論化学
  • 表面、皮膜および薄膜
  • 材料化学


「Surface-potential reversibility of an amino-terminated self-assembled monolayer based on nanoprobe chemistry」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。