抄録
LetM(n) be the largest integer that can be expressed as a sum of the reciprocal of distinct integers ≤n. Then for somec1,c2>0, log n+γ-2-(c1/log2 n)≤M(n)≤logn+γ-(c2/log2 n), which answers a question of Erdos.
本文言語 | English |
---|---|
ページ(範囲) | 206-216 |
ページ数 | 11 |
ジャーナル | Journal of Number Theory |
巻 | 76 |
号 | 2 |
DOI | |
出版ステータス | Published - 1999 6月 |
外部発表 | はい |
ASJC Scopus subject areas
- 代数と数論