抄録
For a certain kind of tensor functor F:C→D, we define the relative modular object χF∈D as the “difference” between a left adjoint and a right adjoint of F. Our main result claims that, if C and D are finite tensor categories, then χF can be written in terms of a categorical analogue of the modular function on a Hopf algebra. Applying this result to the restriction functor associated to an extension A/B of finite-dimensional Hopf algebras, we recover the result of Fischman, Montgomery and Schneider on the Frobenius type property of A/B. We also apply our results to obtain a “braided” version and a “bosonization” version of the result of Fischman et al.
本文言語 | English |
---|---|
ページ(範囲) | 75-112 |
ページ数 | 38 |
ジャーナル | Journal of Algebra |
巻 | 471 |
DOI | |
出版ステータス | Published - 2017 2月 1 |
ASJC Scopus subject areas
- 代数と数論