TY - JOUR
T1 - Transmission Electron Microscopic Observation and Microanalysis of Type 316L Weld Metal —Low Temperature Toughness of Austenitic Stainless Steel Weld Metal (Report 2)—
AU - Tamura, Hiroshi
AU - Onzawa, Tadao
AU - Takasaki, Akito
PY - 1987
Y1 - 1987
N2 - An authors’ previous paper which reported on the influence of delta-ferrite on low temperature toughness of Type 316L austenitic stainless steel weld metal, revealed that the toughness of as-welded specimen was dependent not only on the delta-ferrite content but also on the solidification mode. In this paper, various factors being affected on the toughness such as concentration difference, coherency, etc., were investigated in detail by using a transmission electron microscopy (TEM), an analytical electron microscopy (STEM/EDX) and a scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM/EDX). From an electron diffraction analysis, a crystallographic orientation of primary delta-ferrite was coherent with that of its adjacent austenite matrix but in the eutectic delta-ferrite, the relation was in-coherent. The amount of molybdenum contained in the eutectic delta-ferrite was 1.8 times as that in the primary delta-ferrite and moreover, a cell or a cellular dendrite boundary adjacent to the eutectic delta-ferrite, was enriched in molybdenum slightly. Probably, in these molybdenum-rich sites, a lattice strain was considered to be higher than that in the primary delta-ferrite. From the SEM/EDX analysis on the fractured surface of the Chirpy tested eutectic delta-ferrite specimen, the chromium and molybdenum rich zones were measured, where these compositions were equivalent to that of delta-ferrite or cellular dendrite. However, in the primary delta-ferrite specimen, such a zone could not be detected. From results above, when the eutectic delta-ferrite specimen was Charpy-tested, a crack initiation occurred at the delta-ferrite/austenite boundary or within the delta-ferrite and subsequently, the crack propagated preferentially along the cell or the cellular dendrite boundary or the delta-ferrite. In the specimen heat-treated at 923 K for 100 hrs, the concentration of the principal elements such as chromium, molybdenum and nickel within the prior delta-ferrite fluctuated widely, independent of its morphology, in which furthermore, the presence of carbide M23C6 and a phase were confirmed.
AB - An authors’ previous paper which reported on the influence of delta-ferrite on low temperature toughness of Type 316L austenitic stainless steel weld metal, revealed that the toughness of as-welded specimen was dependent not only on the delta-ferrite content but also on the solidification mode. In this paper, various factors being affected on the toughness such as concentration difference, coherency, etc., were investigated in detail by using a transmission electron microscopy (TEM), an analytical electron microscopy (STEM/EDX) and a scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM/EDX). From an electron diffraction analysis, a crystallographic orientation of primary delta-ferrite was coherent with that of its adjacent austenite matrix but in the eutectic delta-ferrite, the relation was in-coherent. The amount of molybdenum contained in the eutectic delta-ferrite was 1.8 times as that in the primary delta-ferrite and moreover, a cell or a cellular dendrite boundary adjacent to the eutectic delta-ferrite, was enriched in molybdenum slightly. Probably, in these molybdenum-rich sites, a lattice strain was considered to be higher than that in the primary delta-ferrite. From the SEM/EDX analysis on the fractured surface of the Chirpy tested eutectic delta-ferrite specimen, the chromium and molybdenum rich zones were measured, where these compositions were equivalent to that of delta-ferrite or cellular dendrite. However, in the primary delta-ferrite specimen, such a zone could not be detected. From results above, when the eutectic delta-ferrite specimen was Charpy-tested, a crack initiation occurred at the delta-ferrite/austenite boundary or within the delta-ferrite and subsequently, the crack propagated preferentially along the cell or the cellular dendrite boundary or the delta-ferrite. In the specimen heat-treated at 923 K for 100 hrs, the concentration of the principal elements such as chromium, molybdenum and nickel within the prior delta-ferrite fluctuated widely, independent of its morphology, in which furthermore, the presence of carbide M23C6 and a phase were confirmed.
KW - Analytical electron microscopy
KW - Austenitic stainless steel
KW - Delta-ferrite
KW - Low temperature toughness
KW - Transmission electron microscopy
KW - Weld metal
UR - http://www.scopus.com/inward/record.url?scp=0023347818&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023347818&partnerID=8YFLogxK
U2 - 10.2207/qjjws.5.256
DO - 10.2207/qjjws.5.256
M3 - Article
AN - SCOPUS:0023347818
SN - 0288-4771
VL - 5
SP - 256
EP - 262
JO - QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY
JF - QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY
IS - 2
ER -