Twist Automorphisms on Quantum Unipotent Cells and Dual Canonical Bases

Yoshiyuki Kimura, Hironori Oya

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In this paper, we construct twist automorphisms on quantum unipotent cells, which are quantum analogues of the Berenstein-Fomin-Zelevinsky twist automorphisms on unipotent cells. We show that those quantum twist automorphisms preserve the dual canonical bases of quantum unipotent cells. Moreover, we prove that quantum twist automorphisms are described by the syzygy functors for representations of preprojective algebras in the symmetric case. This is the quantum analogue of Geiß-Leclerc-Schröers description, and Geiß-Leclerc-Schröers results are essential in our proof. As a consequence, we show that quantum twist automorphisms are compatible with quantum cluster monomials. The 6-periodicity of specific quantum twist automorphisms is also verified.

本文言語English
ページ(範囲)6772-6847
ページ数76
ジャーナルInternational Mathematics Research Notices
2021
9
DOI
出版ステータスPublished - 2021 5月 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Twist Automorphisms on Quantum Unipotent Cells and Dual Canonical Bases」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル