Virtual Reference Feedback Tuning-based Model-Free Adaptive Displacement Control for Tap-Water-Driven Artificial Muscle and Robustness Evaluation to Load

Satoshi Tsuruhara, Kazuhisa Ito

研究成果: Conference contribution

抄録

An artificial muscle is well known to have strong asymmetric hysteresis characteristics, which depend on the load applied to the muscle. It is therefore difficult to achieve a high control performance and robustness to various loads. In a previous study, model-free adaptive control (MFAC), which is a data-driven control method, was applied to muscles, and a high tracking control performance was achieved. However, MFAC requires numerous design parameters that are extremely time-consuming to tune. To solve these problems, this study considers the tuning of the design parameters of the MFAC by introducing virtual reference feedback tuning, which is a data-driven control method. In addition, control experiments with five loads were conducted to verify the robustness of the load. The experimental results show that the proposed method achieves a high tracking control performance without an overshoot and is highly robust to loads while reducing the time-consuming routine for parameter tuning and modelling.

本文言語English
ホスト出版物のタイトル2022 European Control Conference, ECC 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ221-226
ページ数6
ISBN(電子版)9783907144077
DOI
出版ステータスPublished - 2022
イベント2022 European Control Conference, ECC 2022 - London, United Kingdom
継続期間: 2022 7月 122022 7月 15

出版物シリーズ

名前2022 European Control Conference, ECC 2022

Conference

Conference2022 European Control Conference, ECC 2022
国/地域United Kingdom
CityLondon
Period22/7/1222/7/15

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 情報システムおよび情報管理
  • 制御およびシステム工学
  • 制御と最適化
  • モデリングとシミュレーション

フィンガープリント

「Virtual Reference Feedback Tuning-based Model-Free Adaptive Displacement Control for Tap-Water-Driven Artificial Muscle and Robustness Evaluation to Load」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル